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Abstract

The paper develops tools and methods for linear time-varying, discrete-time systems analysis. It consists
of two parts. The first one gives a theoretical background. There are definitions and numerical algorithms
for approximating frequency characteristics. The main method is based on singular value decomposition,
discrete Fourier transform and power density spectrum approach. The second part of the paper contains
numerical examples. Six different models have been analyzed. Three for frequency characteristics
approximation and the other three for evaluating the degree of system non-stationarity. Some of the models
are time-variant and some are time-invariant. For better evaluation, results yielded by the proposed method
are compared with classical Bode characteristics.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Frequency methods present one of the most important tools for linear, time-invariant (LTI)
systems analysis, nevertheless well-developed concepts and analytic methods of time-invariant
systems are not applicable to linear time-variant systems (LTV). Also the studies of stability and
dynamics problems are different due to the finite time horizon. The analysis for a set with infinite
length uses essentially a frequency domain description. The tool, which is used to describe a
system by its frequency-dependent gain, is quite useful, but use for plants considered on a finite
time interval is not known. This work presents tools for time-variant systems using approximation
of classic, frequency methods. In the paper, a new approach for time-variant systems is presented
using frequency methods.
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One of the first attempts to analyze LTV systems in the frequency domain was made by Zadeh
[1,2]. The time-varying transfer function has been defined by extending the Laplace transform to
the varying impulse response. However, in general, no closed form of Zadeh’s transfer function is
known. Furthermore, the use of Zadeh’s transfer function in a limited time variation seems
problematic since the definition assumes that the variation continues infinitely. The singularity or
varying pole of Zadeh’s transfer function was used to study the stability of time-varying systems
by D’Angelo [3]. Recent works on frequency aspects for LTV systems focus on modal analysis.
Ideas of varying eigenvalues or varying natural frequencies have been used without a rigorous
definition by Bogoliubov and Mitropolsky [4], Basseville et al. [5], Maia and Silva [6]. The concept
of pseudo-modal parameters (PMP) was introduced and described by Liu [7–10]. The PMP are
related to the eigenvalues of the varying discrete-time state transition matrices by analogy to time-
invariant systems. The PMP offer a description for dynamic properties of LTV systems using a
compact set of parameters.
An analysis of singular value decomposition-discrete Fourier transform (SVD-DFT),

which is introduced in this work, may be compared to the time-varying transfer function
defined by Zadeh [1] or the PMP, described by Liu [7,9,10]. There are a few weaknesses and
peculiarities of both methods. The SVD-DFT method gives Bode characteristics (magnitude-
and phase-frequency responses), not only natural frequencies; nevertheless Bode characteristics
are given by a finite set of frequencies (or singular vectors) and corresponding gains. Physical
properties of the system are dependent not only on the poles but also on the zeros and
on the gain of the system, which are neglected when using PMP. The products of SVD-DFT
analysis are the characteristics (amplitude and phase-frequency responses). The results are
that the information included in characteristics cannot be extracted for specific time
samples. Extracting the exact nature of the variation is sometimes easier using PMP. Of
course choice of the method depends not only on performance but also on habits. An important
advantage of the SVD-DFT method is that the characteristics calculated for LTI systems are
almost identical with classic Bode diagrams. Moreover, as the result of analysis, a coefficient
of variability of the system can be computed. If the set of the system matrices has been taken
by system identification [9], the coefficient gives information, whether the system is LTI, LTV or
non-linear.

2. Model description

To describe dynamic time varying discrete-time systems, difference equations with time-
dependent coefficients or a generalized description employing state equations with time-dependent
matrices are used. Input–output relationships in real systems are always featured by a non-zero
time delay. In such a case system matrix DðkÞ � 0 and term DðkÞ � vpðkÞ in Eq. (2) can be omitted.
State equations take the following form:

xpðk þ 1Þ ¼ AðkÞ � xpðkÞ þ BðkÞ � vpðkÞ; ð1Þ

ypðkÞ ¼ CðkÞ � xpðkÞ þDðkÞ � vpðkÞ; kAN; xpð0Þ ¼ 0; ð2Þ
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where fxpðkÞARn; kAf0;y;N � 1gg is nominal state, fvpðkÞARm; kAf0;y;N � 1gg is nominal
control, fypðkÞARp; kAf0;y;N � 1gg is nominal output, and fAðkÞARn
n;BðkÞARn
m;
CðkÞARp
n; kAf0;y;N � 1gg are system matrices.
Alternatively, the system model may be described with the help of operators. Then Eqs. (1–2)

can be given in the following form:

ypðkÞ ¼ ð #C #Nx0ÞðkÞ þ ð #C #L #BvpÞðkÞ or #y ¼ #C � #N � x0 þ #C � #L � #B � #v: ð3Þ

The system natural response ð#v ¼ 0Þ is determined by the #y0 ¼ #C � #N � x0 term, and the system
response at zero initial conditions is determined by the #yv ¼ #C � #L � #B � #v term. In order that system
(3) be equivalent to system (1–2), operators #C #L #B and #C #N must be defined in one of the two
equivalent notations: either an evolutionary one, where operators are written by means of sums
and products [11] or a matrix-based one, where each of the operators can be presented in terms of
matrices. Matrix-based definitions of the system operators are expressed as follows:

#L ¼

0 0 ? 0 0

I 0 ? 0 0

Að1Þ I 0 ^ ^

^ & I 0 0

AðN � 2Þ?Að1Þ ? AðN � 2Þ I 0

2
6666664

3
7777775
; #N ¼

I

Að0Þ

^

AðN � 2Þ?Að0Þ

2
6664

3
7775; ð4Þ

#B ¼

Bð0Þ 0 0

0 & 0

0 0 BðN � 1Þ

2
64

3
75; #C ¼

Cð0Þ 0 0

0 & 0

0 0 CðN � 1Þ

2
64

3
75; ð5Þ

where operators #B and #C have block diagonal form. State xpð�Þ; output ypð�Þ and input vpð�Þ have
the following notation:

#x ¼

xpð0Þ

^

xpðN � 1Þ

2
64

3
75; #y ¼

ypð0Þ

^

ypðN � 1Þ

2
64

3
75; #v ¼

vpð0Þ

^

vpðN � 1Þ

2
64

3
75: ð6Þ

The operator #C #L #B is a compact, Hilbert–Schmidt operator from l2 into l2 and actually maps
bounded signals uðkÞAU ¼ l2½0;N� into signals yAY:

3. Distribution theorems

Elements of frequency analysis introduced here are based mainly on singular value
decomposition (SVD) of the system operators. Such a decomposition presents a generalization
of the classic SVD of matrices [12]. This is possible because operators defined for discrete-time
system over a finite time horizon are finite dimensional. For such systems the time horizon is a
product of sampling period of the system and total number of samples.
As in linear algebra, SVD decomposes the operator into corresponding sets of singular values

si; singular input vectors vi and singular output vectors ui: Any complex or real matrix X may be
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written as a product of three matrices X ¼ U � R � V�; where R ¼ diagðsiÞ is a diagonal matrix, and
orthonormal matrices U, V are composed of column vectors ui and vi; respectively.
Two theorems, which will be used further to define frequency characteristics for time varying

systems, are given below.

3.1. Theorem on a decomposed system

Theorem 1. Response yv ¼ si � ui of a singular value decomposed U � S � VT ¼ #C � #L � #B system
having been excited by the input #v ¼ vi defined by the ith column of the V matrix, is equal to the

product of ith singular value and ith column of the U matrix.

Theorem 2. Natural response y0 ¼ si � ui of a singular value decomposed U0 � S0 � VT
0 ¼ #C � #N system

at x0 ¼ vi initial conditions defined by the ith column of the V0 matrix, is equal to the product of ith
singular value and ith column of the U0 matrix.

Proofs of Theorems 1 and 2 follow from orthonormality of U, V matrices and from properties
of SVD. The control vector v and initial conditions x0 for which the gain and energy capacity are
the biggest are given by the first column of the V ðV0Þ matrix. The control vector v and initial
conditions x0 for which gain and energy capacity are the smallest are given by the last column of
the V ðV0Þ matrix.

4. Transform theorems

To derive relationships for frequency responses of time variant discrete-time systems one has to
invoke the power spectral density function, for which it holds

SyðokÞ ¼ jGðokÞj
2 � SvðokÞ; ð7Þ

where SyðokÞ; SvðokÞ are output and input spectral densities, respectively.
A frequency response jGðokÞj can be determined in a unique way if input and output spectral

densities of the system are known. The following theorem can be proved by making use of SVD.

Theorem 3. Discrete power spectral density for any orthonormal matrix originated from singular
value decomposition is equal to 1 if counted as a sum of power spectral densities of individual matrix
columns fV ¼ fvijg; i; j ¼ 1;y;Ng:

SvðokÞ ¼
XN

j¼1

SjðokÞ ¼
1

N

XN

j¼1

jDFTk½vj�j
2

¼
1

N

XN

i¼1

XN

n¼1

vnie
�j2pðk�1Þðn�1Þ=N

�����
�����
2

¼ 1; ð8Þ

where ok ¼ k=ð2TpNÞ; Tp is the sampling period.
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Proof of the theorem follows directly from the orthonormality of the SVD matrix [12] and from
unitary properties of the DFT transform. The following equation holds true then:

jDFTk½vj�j
2 ¼ 1; ð9Þ

hence

SðokÞ ¼
1

N

XN

1 ¼ 1: ð10Þ

Thus the theorem is proved.

Theorem 4. The output power spectral density can be evaluated as a sum of power spectral densities
of individual columns of a matrix defined as a product of U � S matrices. This can be written in the

following way:

SyðokÞ ¼
1

N

XN

j¼1

jDFTk½uj � sjj�j
2 ¼

1

N

XN

i¼1

XN

n¼1

unisie
�j2pðk�1Þðn�1Þ=N

�����
�����
2

; ð11Þ

where ok ¼ k=ð2TpNÞ; Tp is the sampling period, si ¼ sii � i is the singular value of U � S � VT ¼
#C � #L � #B decomposition.

Proof of the theorem follows directly from SVD properties, especially from orthonormality of
U, V matrices.

5. Bode characteristics approximation

Bode characteristics include the magnitude-frequency response jGðokÞj and the phase-frequency
response jðokÞ ¼ argðGðokÞÞ: The former can be obtained by substituting Eq. (8) into Eq. (7).
Taking square roots from both sides, one gets

jGðokÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SyðokÞ

p
: ð12Þ

After substituting Eq. (11), one obtains

jGðokÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

j¼1
s2j jDFTk½uj�j2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
si

XN

n¼1
unie�j2pðk�1Þðn�1Þ=N

��� ���2
r

; ð13Þ

which uniquely defines the magnitude-frequency response.
By analogy with the latter, the phase-frequency response can be written as

jðokÞ ¼ arg
XN

j¼1

sj

DFTk½uj�
DFTk½vj�

 !

¼ arg
XN

i¼1

si

PN
n¼1 unie

�j2pðk�1Þðn�1Þ=NPN
n¼1 vnie�j2pðk�1Þðn�1Þ=N

 ! !
: ð14Þ

Singular values si in Eqs. (13)–(14) play their part as weight functions.
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The derived relationships hold true for both time invariant and time variant systems.
Characteristics obtained in the way shown for time invariant systems at a finite time horizon are
close to Bode characteristics obtained in the classic way by substituting z ¼ expð joTpÞ into
discrete transfer function. It is difficult to draw a comparison for time variant systems. The
transfer function defined by Zadeh [1,2] and improved by his followers [13–17] is determined over
an infinite time horizon. It is somewhat easier to compare the obtained results with those obtained
while analyzing pseudomodal parameters. Nonetheless, apart from pole shifting, shifting of zeros
and system gain may also occur.

6. Degree of system time variability

Dynamic linear systems can be variable either in the frequency domain (linear time invariant
systems—LTI systems) or in the time domain (linear frequency invariant systems—LFI systems).
The main difference between LTI and LFI systems can be recognized by comparison of the output
function. The output function of an LTI system is a time domain convolution or frequency
domain multiplication, whereas the output function of LFI system is a time domain multiplication
or frequency domain convolution. Essentially, LFI is a static system with a time variant gain. In
the most general case a dynamic linear system can be variable in both frequency and time domain.
From the mathematical point of view a dichotomous classification into time or frequency variant
systems is clearly defined. However, from the practical viewpoint determining the degree of time
non-stationarity on a continuous scale is more significant than such a dichotomous classification
(variant–invariant). This is due to the fact that scattering of system parameter values does not
necessarily imply a change in system properties as a whole; if not, the changes can be insignificant.
To illustrate the problem of determining the degree of time variability, consider a system with a

periodically time variant gain. The system is given in the state space as

xðk þ 1Þ ¼ AðkÞ � xðkÞ þ BðkÞ � uðkÞ;

yðkÞ ¼ CðkÞ � xðkÞ þDðkÞ � uðkÞ: ð15Þ

The system at hand is a single-input single-output one. Thus system matrices are scalars. A simple
analysis can be performed if AðkÞ � 0; DðkÞ � 0: In such a case, a typical time-delay system must
be used. Depending on the values the B and C matrices take, the following four cases given in
Table 1 may be distinguished.
In this example, the degree of time non-stationarity is dependent on the e parameter. The

greater is e; the greater is the degree of system time non-stationarity. As e-0 the system response
tends asymptotically to the response produced by a time invariant system. The output frequency
spectrum varies with the degree of system time variability. In the output spectrum side bands with
o0 � op;o0 þ op frequencies appear and, in addition, the amplitude of the main band o0

diminishes. These phenomena are caused by the system variability modulation.
A little different effect is produced by white noise modulation. The noise modulated by any

other signal still remains the noise, only the parameters are changed. In the quasi-non-stationary
system the noise has been modulated by a sinusoidal input. As a result, a white noise with another
variance is produced. A change in variance entails a change in standard deviation, in proportion
to which is the value of the zero-frequency component in the system output magnitude-frequency
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response. Let xnoise ¼ Nð0; 1Þ denote a normal distribution noise with parameters EðxÞ ¼ 0;
V ðxÞ ¼ 1; and vaxnoise denote an arbitrary input signal. Then the modulator output y ¼ xnoisev is
a noise with following parameters: EðyÞ ¼ 0 and V ðyÞ ¼ PðvÞ; where

EðyÞ ¼
1

2t

Z t

�t
yðtÞ dt; VðyÞ ¼

1

2t

Z t

�t
ðyðtÞ � EðyÞÞ2 dt;

PðvÞ ¼
1

2t

Z t

�t
v2ðtÞ dt: ð16Þ

For periodic signals t is equal to the period t ¼ T ; and for other signals t tends to infinity ðt-NÞ:
Standard deviation is equal to the square root of variance. For a quasi-non-stationary system and
sinusoidal input vðtÞ ¼ sinðo0tÞ it holds:

s ¼
ffiffiffiffiffiffiffiffiffiffi
V ðyÞ

p
¼

ffiffiffiffiffiffiffiffiffi
PðvÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4p

Z 2p

�2p
sin2ðo0tÞ dt

s
¼

ffiffiffi
2

p
2
D0:7: ð17Þ

These relationships can be easily verified numerically.
Time and frequency variability for continuous systems was dealt with in Refs. [13–17]. An

approach has been proposed there that is based on the impulse response of a time variant system,
which presents an outgrowth of the approach originated by Zadeh.
This approach has been used successfully for analysis of time variant communication channels.

The measure of potential time–frequency shifting, which system can impart is a spreading
function. For example, asymmetrical spreading function or delay Doppler spread function
introduced by Bello [13] is obtained:

S
ð1=2Þ
H ðt; nÞ ¼

Z
t

hðt; t � tÞe�i2pnt dt: ð18Þ
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Table 1

Scattering of the signal spectrum for various systems

Stationary Non-stationary Quasi-stationary Quasi-non-stationary

BðkÞ 1 1� eþ e cosðopkTsÞ 1� eþ e cosðopkTsÞ 1þ e randn
0pep1 0pep1

CðkÞ 1 1 1

1� eþ e cosðopðk � 1ÞTsÞ
1

Output spectra
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For the spreading function to be evaluated, the knowledge of the set of system impulse responses
hðt; t � tÞ is needed, where t is the determined time instant, and t � t is the point in time at which
the impulse has been generated.
The generalized spreading function of an LTI system with kernel hðt; t � tÞ ¼ gðt � tÞ ¼ gðtÞ

SHðt; nÞ ¼ gðtÞ � dðnÞ ð19Þ

and is concentrated along t-axis reflecting the system can only cause time shifts. Dirac function is
denoted by dðnÞ:
Employing the spreading function for system analysis makes it possible to determine the system

variability in both time and frequency domains. To do this, however, the knowledge of system
responses obtained with appropriate resolution over a wide time horizon is needed. An attempt
made by the author to determine the spreading function for a discrete system defined over a finite
time horizon failed. The numerical algorithm turned out to be unstable, and the results obtained
were almost independent of actual changes in system parameters.
Another approach that may be useful to determine the system time variability is the

modal analysis [6,7,9,10]. It yields a relatively great body of data the interpretation of
which requires some knowledge and experience. The cardinal virtues of PMP are its numerical
stability independent of the time horizon and a very wide field of application. Comparison of
PMP and SVT-DFT is given in Table 2, where r is the system order, and N is the time horizon
length.
Analysis of output amplitude spectra carried out by the author for different systems

allows one to define certain functions that enable the system time variability to be measured.
The test input should be chosen first. In the light of SVD properties, especially those revealed
by Theorem 1, the optimal test signal is represented by the system singular vectors vi

with their corresponding weights si: If so, the measure of the system non-stationarity may be
defined as

(I) weighted main band attenuation,
(II) weighted relative distance between the side bands and the main band.

The less the output is affected by the parameter non-stationarity, the smaller is coefficient (I).
Rate of parameter changes is of secondary importance here. The value of coefficient (II) depends
on the rate of parameter changes. The slower the changes, the smaller coefficient (II).
Numerically, coefficient (I) can be evaluated as a sum of squared differences between

consecutive discrete values for power spectral density of normed characteristic vectors for input
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Table 2

PMP and SVD-DFT-based analyses compared from the viewpoint of complexity of the results yielded

PMP analysis SVD-DFT analysis

Numerical results rN real values N real values or N=2 complex values

Graphical results r characteristics of N points every 2 characteristics of N=2 points every
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and output spectra:

Svar1 ¼
XN

i¼1

si

s1

��� jDFT ½vi�j � jDFT ½ui�j
���
2

¼
XN

i¼1

si

s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

k¼1
ðjDFTk½vi�j � jDFTk½ui�jÞ

2

r
: ð20Þ

The formula for numerical computations is given below

Svar1 ¼
XN

i¼1

si

s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

k¼1

XN

n¼1
vnie�j2pðk�1Þðn�1Þ=N

��� ���� XN

n¼1
unie�j2pðk�1Þðn�1Þ=N

��� ���� �2r
: ð21Þ

Coefficient (II) is evaluated from

Svar2 ¼ Df
XN

i¼1

jkmvðiÞ � kmuðiÞj
si

s1
¼

1

TN

XN

i¼1

jkmvðiÞ � kmuðiÞj
si

s1
; ð22Þ

where kmvðiÞ is index of maximal value in vector Vi; kmuðiÞ is index of maximal value in vector Ui;
resolution in frequency domain Df ¼ 1=TN is normalization factor for Eq. (22). For time
invariant systems all coefficients should be equal to zero.
In the next section, an attempt will be made to check whether the proposed relationships

present a good measure of the system non-stationarity.

7. Numerical examples for bode characteristics approximation for time-varying systems

7.1. Oscillatory, minimum phase, time invariant system of the fourth order

The system is described in the state space. Sampling period is equal to Tp ¼ 0:5 s: System
matrices and computed zeros and poles for this system are

A ¼

0:12 0:10 �0:16 0:33

0:36 0:41 �0:19 0:05

0:12 �0:30 0:46 0:22

0:04 0:25 0:31 0:35

2
6664

3
7775; B ¼

�0:41

�0:01

0:37

0:06

2
6664

3
7775;

z ¼

0:6811

0:27þ 0:18i

0:27� 0:18i

2
64

3
75; p ¼

�0:037þ 0:27i

�0:037� 0:27i

0:6807

0:73

2
6664

3
7775;

C ¼ ½�0:85 0 0:66 � 0:85�; D ¼ ½0�

Fig. 1 shows the magnitude-frequency response and the phase-frequency response obtained via
the SVD-DFT method (solid line) and those obtained in the classic way by substituting z ¼ e joTp :
The error in magnitude-frequency response deviation does not exceed 1 dB; and is caused by a
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short time horizon used for analysis which entails a low resolution in the frequency domain
Df ¼ 0:0625 Hz corresponding to 16 points on the curve.
Computed value of non-stationarity coefficient Svar1 ¼ 1:6 � 10�13; Svar2 ¼ 0:

7.2. Oscillatory element with variable resonant frequency

The system is a discretized analogue oscillatory, variable structure element. Specifications and
model parameters are assumed in the simulation:

* The oscillatory element is described by the following differential equation:

d2yðtÞ
dt2

þ 2bðtÞo0ðtÞ
dyðtÞ
dt

þ o2
0ðtÞyðtÞ ¼ ko2

0ðtÞuðtÞ;

* On the assumption of constant o0ðtÞ ¼ o0; bðtÞ ¼ b the corresponding transfer function is
equal to

GoscðsÞ ¼
ko2

0

s2 þ 2bo0s þ o2
0

;
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Fig. 1. Bode characteristics, determined using SVD-DFT method (solid line) and using classical method (dotted line).
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* Sampling period Tp ¼ 0:025 s;
* Simulation horizon N ¼ 256 (time horizon 6:4 s; resolution in frequency domain

Df ¼ 0:039 Hz),
* Gain k ¼ 1;
* Resonant frequency before change ðtp3:2 sÞ f1 ¼ 2 Hz and after change ðt > 3:2 sÞ f2 ¼ 3:6 Hz;
* Damping factors b1 ¼ 4
 10�4; b2 ¼ 2:2
 10�4 (simulation in Figs. 2–4) or b1 ¼ b2 ¼

0:08
 10�4 (simulation in Fig. 3),
* Time-invariant transfer function for averaged system GiðzÞ ¼ 1

2
ðG1ðzÞ þ G2ðzÞÞ (G1 and G2

conversion has been done by the zero order hold method).

Resonant frequencies f1; f2 and damping factors b1; b2 may be considered as corresponding
pseudomodal values at defined time instants.
In Figs. 2 and 3 Bode characteristics for an oscillatory system with variable resonant frequency

are depicted. A reference frequency response obtained for an averaged reference system Gz by
substituting z ¼ e joTp is plotted with a dash line. Fig. 4 shows the system step response.
Computed value of non-stationarity coefficient Svar1 ¼ 1:6; Svar2 ¼ 2:5 for simulation in Fig. 2

and Svar1 ¼ 2:9; Svar2 ¼ 4:4 for simulation on Fig. 3.
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Fig. 2. Bode characteristics for damping factors b1 ¼ 4
 10�4; b2 ¼ 2:2
 10�4 determined using SVD-DFT method

for time-varying system (solid line) and for average time-invariant transfer function GzðzÞ (dotted line).
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Fig. 3. Bode characteristics for damping factors b1 ¼ b2 ¼ 0:08
 10�4 determined using SVD-DFT method for time-

varying system (solid line) and for average time-invariant transfer function GzðzÞ (dotted line).
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average time-invariant transfer function GiðzÞ (dashed line).
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7.3. Variable structure, minimal phase, time varying system of fourth order

The system is described as zeros–poles model. Sampling period is equal to Tp ¼ 0:1 s; time
horizon is N ¼ 32 steps. The structure has been changed after Np steps.

System before change:

z ¼

0:34þ 0:08i

0:34� 0:08i

�0:43

2
64

3
75; p ¼

0:11þ 0:75i

0:11� 0:75i

0:27þ 0:09i

0:27� 0:09i

2
6664

3
7775:

System after Np steps:

z ¼

0:34þ 0:0008i

0:34� 0:0008i

�0:43

2
64

3
75; p ¼

0:11þ 0:008i

0:11� 0:008i

0:27þ 0:0009i

0:27� 0:0009i

2
6664

3
7775:

Since system realization is of the lowest order, so values of the system pseudomodes may be
considered as equal to those of poles given above at specific time instants.
In Fig. 5 the magnitude- and phase-frequency responses obtained for two different time instants

at which the system structure varies are plotted. The system is oscillatory before it has changed,
and approximately oscillation-free after the change. In the case that the structure is changed after
three steps the oscillation-free character is prevailing (three steps of the oscillatory character, 29
steps of the oscillation-free character), which can be concluded from the solid line plot. In the case
that the structure is changed after 15 steps the oscillatory character of the plot can be seen (dash
line plot).
Computed value of non-stationarity coefficient Svar1 ¼ 1:5; Svar2 ¼ 1:3 for Np ¼ 3 and Svar1 ¼

1:1; Svar2 ¼ 0:4 for Np ¼ 15:

8. Numerical examples for evaluating the degree of system non-stationarity

The main concern in the examples having been analyzed in the former section was with
evaluation of SVD-DFT frequency responses for different systems and comparison, as far as
possible, with classic Bode characteristics. However, in the light of how the variability coefficients
(20,22) are defined, an analysis of the influence the e parameter changes of a non-stationary
system exert on the whole system properties may be of interest. To carry out a numerical analysis
four models of systems with a specified magnitude of parameter variations that has been presented
and discussed in Section 6 are used. As a measure of non-stationarity definitions (20)–(22), and for
the purpose of comparison the graphical shape of step responses have been taken. In this section,
coefficients of Eqs. (20), (22) versus e parameter are evaluated for similar systems by way of
simulation. For purposes of simulation it is assumed that the system is also non-stationary in the
frequency domain and represents a time lag AðkÞ ¼ 0:1: The remaining system parameters are the
same as given in Table 1.
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8.1. Non-stationary system (cosinusoidal)

System coefficients are as follows:
AðkÞ ¼ 0:1; BðkÞ ¼ 1� eþ e cosðopkTsÞ; CðkÞ ¼ 1; DðkÞ ¼ 0:

It is assumed here that e varies within the range eA/10�2; 1S; from where 10 values of e have been
chosen to evaluate the system variability coefficient. The results obtained are summarized in
Fig. 6. Results yielded by Eq. (21) are marked with ‘‘x’’. For eo10�6 the coefficient amounts to
Svar1 ¼ 0: Results yielded by Eq. (22) are marked with ‘‘+’’. For eo10�1 Svar2 takes the value 0.
From Fig. 6 it may be concluded that Svar1 is more stable numerically, even at short time

horizons. Feasibility of Svar2 evaluation is conditioned largely by the resolution obtained in the
frequency domain. Requirements to be met here are much higher than those for Svar1:
Step responses corresponding to 10 highest values of e are depicted in Fig. 7.

8.2. Quasi-stationary system

System coefficients are as follows:

AðkÞ ¼ 0:1; BðkÞ ¼ 1� eþ e cosðopkTsÞ;

CðkÞ ¼
1

1� eþ e cosðopðk � 1ÞTsÞ
; DðkÞ ¼ 0:
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Fig. 5. Bode characteristics, determined using SVD-DFT method for variable structure system. Solid line—change

structure point Np ¼ 3; and dashed line—change structure point Np ¼ 15:
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It is assumed here that e varies within the range eA/10�1; 1S; from where 10 values of e have been
chosen to evaluate the system variability coefficient. The results obtained are summarized in
Fig. 8. Results yielded by Eq. (21) are marked with ‘‘x’’. Results yielded by Eq. (22) are marked
with ‘‘+’’. For eo0:6 Svar2 takes the value 0.
From Fig. 8 it may be concluded that Svar1 is more stable numerically, even at short time

horizons. Feasibility of Svar2 evaluation is conditioned largely by the resolution obtained in the
frequency domain. Also, requirements to be met here are much higher than those for Svar1:
Step responses corresponding to ten highest values of e are depicted in Fig. 9.
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8.3. Quasi-non-stationary

System coefficients are as follows:
AðkÞ ¼ 0:1;BðkÞ ¼ 1þ e randn; CðkÞ ¼ 1;DðkÞ ¼ 0; where randn is random noise described by

normal distribution with parameters Nð0; 1Þ:
It is assumed here that e varies within the range eA/10�5; 1S; from where 10 values of e have

been chosen to evaluate the system variability coefficient. The results obtained are summarized in
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Fig. 8. Variability coefficient versus e for a quasi-stationary system.
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Fig. 10. Results yielded by Eq. (21) are marked with ‘‘x’’. Results yielded by Eq. (22) are marked
with ‘‘+’’. For eo0:07 Svar2 takes the value 0.
From Fig. 10 it may be concluded that Svar1 is more stable numerically, even at short time

horizons, as for previous examples. Feasibility of Svar2 evaluation is conditioned largely by the
resolution obtained in the frequency domain. Requirements to be met here are much higher than
those for Svar1:
Step responses corresponding to 10 highest values of e are depicted in Fig. 11.
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Fig. 10. Variability coefficient versus e for a quasi-non-stationary system.

0 0.5 1 1.5 2 2.5 3 3.5
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

A
m

pl
itu

de

ε=0.08 

ε=0.28 

ε=1

ε<0.02 

Fig. 11. Step responses obtained for 10 biggest values of e (quasi-non-stationary system).
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9. Conclusion

The study has achieved two tasks: (1) to extend the well-defined frequency analysis and Bode
characteristics concepts to characterize the dynamics of an LTV system and (2) to introduce a new
method for estimating the non-stationarity degree of the system.
For the first task, a discrete-time, state-space model and operator notation have been used to

represent an LTV system. The paper has explored how the SVD and DFT in connection with
operator notation can be used to describe global properties of an LTV system. It is shown that the
SVD-DFT analysis preserve certain characteristics of conventional frequency analysis defined for
LTI systems.
For the second task, the paper has shown that the time-variability coefficient of the system can

be defined using data from the SVD-DFT analysis of the system. The key to the proposed method
would be to modify input–output spectra of LTV system. The quantity of the modification can be
a measure of time-variability of the system.
A few numerical examples with one LTI and two LTV–variable structure systems have been

used as illustration for the first task. Also three examples with numerical data have illustrated how
the variability coefficient can help understand the degree of time variations due to different
parameter values in the system model.
As part of the study some weaknesses of the proposed methods have been revealed. This raises

some open questions that will determine further studies.

(a) The obtained characteristics for stationary non-minimum-phase systems differ significantly
from their counterparts obtained in a classic way. Would the proposed methods be applicable
to non-minimum-phase systems? (see also Ref. [18]).

(b) The coefficient of system variability Svar2 exhibits a certain numerical instability.
(c) The coefficient of system variability Svar1 changes its properties whenever any of the poles

goes beyond the unit circle. Would it be possible to generalize the observations made to
arbitrary systems and to define, on this basis, stability for discrete-time systems determined
over a finite time horizon? The response of such a system is always bounded.

(d) Which of the properties exhibited by Bode characteristics hold true for approximated
characteristics for non-stationary systems?

(e) In which applications will the performed evaluation of magnitude- and phase-frequency
response and variability coefficient for a non-stationary system be entirely sufficient?
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